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A preexample, the pentagonal subdivision rule

Can you recursively subdivide pentagons by this combinatorial
rule so that the shapes stay almost round (inscribed and
circumscribed disks with uniformly bounded ratios of the radii)
at all levels?

Subdividing them affinely doesn’t work.
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Generating the figures with CirclePack

In 1994, Ken Stephenson suggested using CirclePack to draw
the tilings.

It follows from the Ring Lemma of Rodin-Sullivan that the
pentagons will be almost round at each level. But the three
figures are produced independently. What is impressive is how
much they look like subdivisions.
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Definition of a finite subdivision rule R
I C-F-P, Finite subdivision rules, Conform. Geom. Dyn. 5 (2001)

153–196
I finite CW complex SR (called the model subdivision

complex)
I SR is the union of its closed 2-cells. Each 2-cell is modeled

on a polygon (called a tile type). The 1-cells in SR are
called edge types.

I subdivision R(SR) of SR
I A subdivision map σR : R(SR)→ SR. σR is cellular and

takes each open cell homeomorphically onto an open cell.

I R-complex : a 2-complex X which is the closure of its
2-cells, together with a map h : X → SR (called a structure
map) which takes each open cell homeomorphically onto
an open cell.

I One can use a finite subdivision rule to recursively
subdivide R-complexes. R(X ) is the subdivision of X .
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Example. The dodecahedral subdivision rule
The model subdivision complex has one vertex, two edges, and
three tiles (a triangle, a quadrilateral, and a pentagon), and is
hard to draw. Here are the subdivisions of the three tile types.



The second subdivision of the quadrilateral tile type
(The subdivision is drawn using Stephenson’s CirclePack).



The third subdivision of the quadrilateral tile type



This subdivision rule on the sphere at infinity
The dodecahedral subdivision rule comes from the recursion at
infinity for a Kleinian group generated by the reflections in a
right-angled dodecahedron (image from SnapPea). Each face
is in a hyperbolic plane which meets the boundary sphere in a
red circle. The image at the right shows the circles at infinity for
faces of the star of the fundamental region.



Motivation from the 1970’s
Mostow’s Rigidity Theorem (special case): If two closed
hyperbolic n-manifolds, n ≥ 3, have isomorphic fundamental
groups, then they are isometric.

Thurston’s Hyperbolization Conjecture: If M is a closed
3-manifold such that π1(M) is infinite, is not a free group, and
does not contain a subgroup isomorphic to Z× Z, then M has a
hyperbolic structure.

I A key ingredient of the proof of Mostow’s theorem is the
action of the fundamental group on the “boundary” of
hyperbolic space.

I If you were given a group (say from a presentation) that
was the fundamental group of a closed hyperbolic
3-manifold, could you recover the hyperbolic manifold from
the group?

I Can you define the boundary of a group?
I Can you tell when the boundary of a group is a topological

2-sphere?
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Cannon’s Conjecture

Cannon’s Conjecture: If G is a Gromov-hyperbolic discrete
group whose space at infinity is S2, then G acts properly
discontinuously, cocompactly, and isometrically on H3.

I While a primary motivation for this was Thurston’s
Hyperbolization Conjecture, even after Perelman’s proof of
the Geometrization Conjecture this conjecture is still open.

I How do you proceed from combinatorial/topological
hypotheses to an analytic conclusion?

I Given a sequence of subdivisions of a tiling (or a
shingling), how do you understand/control the shapes of
tiles?

I When can you realize the subdivisions so that the subtiles
stay almost round? (You don’t need almost roundness, but
it guarantees that the following two axioms are satisfied.)
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Weight functions, combinatorial moduli

I shingling (locally-finite covering by compact, connected
sets) T on a surface S, ring (or quadrilateral) R ⊂ S

I weight function ρ on T : ρ : T → R≥0

I ρ-length of a curve, ρ-height Hρ of R, ρ-area Aρ of R,
ρ-circumference Cρ of R

I moduli Mρ = H2
ρ/Aρ and mρ = Aρ/C2

ρ

I fat flow modulus M(R) = supρ H2
ρ/Aρ and fat cut modulus

m(R) = infρ Aρ/C2
ρ

I The sup and inf exist, and are unique up to scaling. (This
follows from compactness and convexity.)



Optimal weight functions - an example
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Optimal weight functions - another example
The optimal weight function is a linear combination of weight
functions from fat flows and of weight functions from skinny
cuts. This is why you get a squaring.
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Combinatorial Riemann Mapping Theorem
I Now consider a sequence of shinglings of S.
I Axiom 1. Nondegeneration, comparability of asymptotic

combinatorial moduli of rings
I Axiom 2. Existence of local rings with large moduli
I conformal sequence of shinglings: Axioms 1 and 2, plus

mesh locally approaching 0.

Theorem (C): If {Si} is a conformal sequence of shinglings on
a topological surface S and R is a ring in S, then R has a
metric which makes it a right-circular annulus such that analytic
moduli and asymptotic combinatorial moduli on rings in R are
uniformly comparable.

I So there is a quasiconformal structure on S with analytic
moduli uniformly comparable to asymptotic combinatorial
moduli.

I J. W. Cannon, The combinatorial Riemann mapping theorem,
Acta Math. 173 (1994), 155–234.
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The Cannon-Swenson Theorem

Theorem (C-Swenson): In the setting of Cannon’s conjecture,
it suffices to prove that the sequence {D(n)}n∈N of disks at
infinity is conformal. Furthermore, the D(n)’s satisfy a linear
recursion.

I J. W. Cannon, E. L. Swenson, Recognizing constant curvature
groups in dimension 3, Trans. Amer. Math. Soc. 350 (1998),
809–849.

I Finite subdivision rules were created as toy models for the
sequences of covers by disks at infinity.
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The pentagonal expansion complex
I Bowers and Stephenson defined the pentagonal expansion

complex as the direct limit of the sequence of subdivisions
of the tile type of the pentagonal subdivision rule.

I P.L. Bowers and K. Stephenson, A “regular” pentagonal
tiling of the plane, Conform. Geom. Dyn. 1 (1997) 58–68

→



The pentagonal expansion complex
I They put a conformal structure on the expansion complex

so that each tile is conformally a regular pentagon. They
showed that the expansion map is conformal, and hence
that the expansion complex is parabolic.



Application of expansion complexes

I More generally, an expansion R-complex is an R-complex
X with structure map f : X → SR such that X is
homeomorphic to R2 and there is an orientation-preserving
homeomorphism ϕ : X → X (the expansion map) with
σR ◦ f = f ◦ ϕ.

I The dihedral symmetry for the pentagonal subdivision rule
makes it much easier to show that the expansion map is
conformal. You would like to be able to make use of
rotational symmetry. The intuition is that for Cannon’s
Conjecture expansion complexes correspond to tangent
spaces at infinity, and at fixed points of loxodromic
elements you will see rotational (but not dihedral)
symmetry.



An example with rotational symmetry

→



Superimposed subdivisions
Here are the third and fourth subdivisions, superimposed. Note
the vertices.



The expansion complex

I One can put a piecewise conformal structure on the
expansion complex X with regular pentagons, and then
use power maps to extend over the vertices. (This is
inspired by the Bowers-Stephenson construction.)

I The expansion map agrees with a conformal map on the
vertices. One can conjugate to get a new fsr for which this
conformal map is the expansion map. The subdivision map
is conformal with respect to the induced conformal
structure on the subdivsion complex.

I C-F-P, Expansion complexes for finite subdivision rules I,
Conform. Geom. Dyn. 10 (2006) 63–99
C-F-P, Expansion complexes for finite subdivision rules II,
Conform. Geom. Dyn. 10 (2006) 326–354



Conformal tilings

I More recently, Bowers and Stephenson have been building
a more general theory of expansion complexes where you
do not require that there is a single expansion map.

I In our setting, this would correspond to tangent spaces at
infinity for points that are not fixed points of loxodromic
elements.

I Philip L. Bowers and Kenneth Stephenson. Conformal tilings I:
foundations, theory, and practice. Conform. Geom. Dyn. 21
(2017) 1–63
Philip L. Bowers and Kenneth Stephenson. Conformal tilings II:
Local isomorphism, hierarchy, and conformal type. Conform.
Geom. Dyn. 23 (2019) 52–104



Two questions

I In the setting of Cannon’s conjecture, can you have
hyperbolic expansion complexes? (Unfortunately the type
problem is hard. Can a finite subdivision rule have
hyperbolic and parabolic expansion complexes that are
locally isomorphic?)

I In a parabolic expansion complex, how nice is the
asymptotic shape of a tile (or of the seed of an expansion
complex)?
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A finite subdivision rule with hyperbolic and parabolic
expansion complexes

I The subdivisions of the six tile types.
I The following expansion complexes are locally isomorphic,

so any compact subcomplex of one is isomorphic to
subcomplexes of the others.



Part of a hyperbolic expansion complex



Part of a parabolic expansion complex Y



Is this expansion complex hyperbolic or parabolic?


